RNase-based self-incompatibility: puzzled by pollen S.
نویسندگان
چکیده
Many plants have a genetically determined self-incompatibility system in which the rejection of self pollen grains is controlled by alleles of an S locus. A common feature of these S loci is that separate pollen- and style-expressed genes (pollen S and style S, respectively) determine S allele identity. The long-held view has been that pollen S and style S must be a coevolving gene pair in order for allelic recognition to be maintained as new S alleles arise. In at least three plant families, the Solanaceae, Rosaceae, and Plantaginaceae, the style S gene has long been known to encode an extracellular ribonuclease called the S-RNase. Pollen S in these families has more recently been identified and encodes an F-box protein known as either SLF or SFB. In this perspective, we describe the puzzling evolutionary relationship that exists between the SLF/SFB and S-RNase genes and show that in most cases cognate pairs of genes are not coevolving in the expected manner. Because some pollen S genes appear to have arisen much more recently than their style S cognates, we conclude that either some pollen S genes have been falsely identified or that there is a major problem with our understanding of how the S locus evolves.
منابع مشابه
Self-incompatibility in the Iranian Almond Cultivar ‘Mamaei’ Using Pollen Tube Growth, Fruit Set and PCR Technique
Self-incompatibility has been studied by using controlled pollination, pollen tube growth and PCR methods in the Iranian almond ‘Mamaei.’. Pollen tube growth and fruit set following self and cross-pollination treatments were evaluated. The percentage of initial and final fruit set was determined for each treatment at 30 and 60 days after controlled pollination. Pollen germination and pollen ...
متن کاملIdentification of Self- incompatibility Alleles in Some Almond Genotypes by Degenerate S-RNase Primers
The almond, Prunus dulcis Miller which belongs to Rosaceae family, is one of the most important commercial and oldest cultivated tree nut crops. Almonds are classified as a ‘nut’ in which the edible seed is the commercial product. Therefore, pollination and fertilization are necessary in almond. The characteristic of cultivated almond to express gametophytic self- incompatibility discourages se...
متن کاملPLC-Mediated Signaling Pathway in Pollen Tubes Regulates the Gametophytic Self-incompatibility of Pyrus Species
Among the Rosaceae species, the gametophytic self-incompatibility (GSI) is controlled by a single multi-allelic S locus, which is composed of the pistil-S and pollen-S genes. The pistil-S gene encodes a polymorphic ribonuclease (S-RNase), which is essential for identifying self-pollen. However, the S-RNase system has not been fully characterized. In this study, the self-S-RNase inhibited the Ca...
متن کاملInsight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions
S-RNase-based self-incompatibility in Petunia is a self/non-self recognition system that allows the pistil to reject self-pollen to prevent inbreeding and to accept non-self pollen for outcrossing. Cloning of S-RNase in 1986 marked the beginning of nearly three decades of intensive research into the mechanism of this complex system. S-RNase was shown to be the sole female determinant in 1994, a...
متن کاملS-RNase-mediated self-incompatibility.
The Solanaceae, Rosaceae, and Scrophulariaceae families all possess an RNase-mediated self-incompatibility mechanism through which their pistils can recognize and reject self-pollen to prevent inbreeding. The highly polymorphic S-locus controls the self-incompatibility interaction, and the S-locus of the Solanaceae has been shown to be a multi-gene complex in excess of 1.3 Mb. To date, the func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2008